Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Neuroimmunol ; 390: 578332, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38537322

RESUMO

Emerging evidence has supported a role for the immune system and liver in Alzheimer's disease (AD). However, our understanding of how hepatic immune cells are altered in AD is limited. We previously found that brain mucosal-associated invariant T (MAIT) cell numbers are increased in AD. Furthermore, loss of MAIT cells and their antigen-presenting molecule, MR1, reduced amyloid-ß accumulation in the brain. MAIT cells are also significantly present in the liver. Therefore, we sought to analyze MAIT and other immune cells in the AD liver. Increased frequency of activated MAIT cells (but not conventional T cells) were found in 8-month-old 5XFAD mouse livers. Therefore, these data raise the possibility that there is a role for peripheral MAIT cells in AD pathology.

2.
J Allergy Clin Immunol ; 153(4): 913-923, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365015

RESUMO

The immune system classically consists of 2 lines of defense, innate and adaptive, both of which interact with one another effectively to protect us against any pathogenic threats. Importantly, there is a diverse subset of cells known as innate-like T cells that act as a bridge between the innate and adaptive immune systems and are pivotal players in eliciting inflammatory immune responses. A growing body of evidence has demonstrated the regulatory impact of these innate-like T cells in central nervous system (CNS) diseases and that such immune cells can traffic into the brain in multiple pathological conditions, which can be typically attributed to the breakdown of the blood-brain barrier. However, until now, it has been poorly understood whether innate-like T cells have direct protective or causative properties, particularly in CNS diseases. Therefore, in this review, our attention is focused on discussing the critical roles of 3 unique subsets of unconventional T cells, namely, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells, in the context of CNS diseases, disorders, and injuries and how the interplay of these immune cells modulates CNS pathology, in an attempt to gain a better understanding of their complex functions.


Assuntos
Doenças do Sistema Nervoso Central , Células T Invariantes Associadas à Mucosa , Células T Matadoras Naturais , Humanos , Doenças do Sistema Nervoso Central/metabolismo , Imunidade Inata
3.
Brain Behav Immun ; 116: 321-328, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38157945

RESUMO

Mucosal-associated invariant T (MAIT) cells are a subpopulation of innate-like T cells that can be found throughout the body, predominantly in mucosal sites, the lungs and in the peripheral blood. MAIT cells recognize microbial-derived vitamin B (e.g., riboflavin) metabolite antigens that are presented by the major histocompatibility complex class I-like protein, MR1, found on a variety of cell types in the periphery and the CNS. Since their original discovery, MAIT cells have been studied predominantly in their roles in diseases in the periphery; however, it was not until the early 2000s that these cells were first examined for their contributions to disorders of the CNS, with the bulk of the work being done within the past few years. Currently, the MR1/MAIT cell axis has been investigated in only a few neurological diseases including, multiple sclerosis and experimental autoimmune encephalomyelitis, brain cancer/tumors, ischemia, cerebral palsy, general aging and, most recently, Alzheimer's disease. Each of these diseases demonstrates a role for this under-studied innate immune axis in its neuropathology. Together, they highlight the importance of studying the MR1/MAIT cell axis in CNS disorders. Here, we review the contributions of the MR1/MAIT cell axis in the progression or remission of these neurological diseases. This work has shed some light in terms of potentially exploiting the MR1/MAIT cell axis in novel therapeutic applications.


Assuntos
Doenças do Sistema Nervoso Central , Células T Invariantes Associadas à Mucosa , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Riboflavina/metabolismo , Doenças do Sistema Nervoso Central/metabolismo
4.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37905092

RESUMO

Tissue damage resulting from a spinal cord injury (SCI) is primarily driven by a robust neuroimmune/neuroinflammatory response. This intricate process is mainly governed by a multitude of cytokines and cell surface proteins in the central nervous system (CNS). However, the critical components of the neuroimmune/neuroinflammatory response during SCI are still not well-defined. In this study, we investigated the impact of CD1d, an MHC class I-like molecule mostly known for presenting lipid antigens to natural killer T (NKT) cells and regulating immune/inflammatory responses, on neuroimmune/neuroinflammatory responses induced by SCI. We observed an increased expression of CD1d on various cell types within the spinal cord, including microglia/macrophages, oligodendrocytes (ODCs), and endothelial cells (DCs), but not on neurons or astrocytes post-SCI. In comparison to wildtype (WT) mice, a T10 contusive SCI in CD1d knockout (CD1dKO or Cd1d -/- ) mice resulted in markedly reduced proinflammatory cytokine release, microglia/macrophage activation and proliferation. Following SCI, the levels of inflammatory cytokines and activation/proliferation of microglia/macrophages were dramatically reduced, while anti-inflammatory cytokines such as IL-4 and growth factors like VEGF were substantially increased in the spinal cord tissues of CD1dKO mice when compared to WT mice. In the post-acute phase of SCI (day 7 post-SCI), CD1dKO mice had a significantly higher frequency of tissue-repairing macrophages, but not other types of immune cells, in the injured spinal cord tissues compared to WT mice. Moreover, CD1d-deficiency protected spinal cord neuronal cells and tissue, promoting functional recovery after a SCI. However, the neuroinflammation in WT mouse spinal cords was independent of the canonical CD1d/NKT cell axis. Finally, treatment of injured mice with a CD1d-specific monoclonal antibody significantly enhanced neuroprotection and improved functional recovery. Therefore, CD1d promotes the proinflammatory response following a SCI and represents a potential therapeutic target for spinal cord repair. Significance Statement: The cell surface molecule, CD1d, is known to be recognized by cells of the immune system. To our knowledge, this is the first observation that the CD1d molecule significantly contributes to neuroinflammation following a spinal cord injury (SCI) in a manner independent of the CD1d/NKT cell axis. This is important, because this work reveals CD1d as a potential therapeutic target following an acute SCI for which there are currently no effective treatments.

5.
J Neuroinflammation ; 20(1): 78, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944969

RESUMO

BACKGROUND: Neuroinflammation is an important feature of Alzheimer's disease (AD). Understanding which aspects of the immune system are important in AD may lead to new therapeutic approaches. We study the major histocompatibility complex class I-related immune molecule, MR1, which is recognized by an innate-like T cell population called mucosal-associated invariant T (MAIT) cells. METHODS: Having found that MR1 gene expression is elevated in the brain tissue of AD patients by mining the Agora database, we sought to examine the role of the MR1/MAIT cell axis in AD pathology. Brain tissue from AD patients and the 5XFAD mouse model of AD were used to analyze MR1 expression through qPCR, immunofluorescence, and flow cytometry. Furthermore, mice deficient in MR1 and MAIT cells were crossed with the 5XFAD mice to produce a model to study how the loss of this innate immune axis alters AD progression. Moreover, 5XFAD mice were also used to study brain-resident MAIT cells over time. RESULTS: In tissue samples from AD patients and 5XFAD mice, MR1 expression was substantially elevated in the microglia surrounding plaques vs. those that are further away (human AD: P < 0.05; 5XFAD: P < 0.001). In 5XFAD mice lacking the MR1/MAIT cell axis, the development of amyloid-beta plaque pathology occurred at a significantly slower rate than in those mice with MR1 and MAIT cells. Furthermore, in brain tissue from 5XFAD mice, there was a temporal increase in MAIT cell numbers (P < 0.01) and their activation state, the latter determined by detecting an upregulation of both CD69 (P < 0.05) and the interleukin-2 receptor alpha chain (P < 0.05) via flow cytometry. CONCLUSIONS: Together, these data reveal a previously unknown role for the MR1/MAIT cell innate immune axis in AD pathology and its potential utility as a novel therapeutic target.


Assuntos
Doença de Alzheimer , Células T Invariantes Associadas à Mucosa , Humanos , Camundongos , Animais , Células T Invariantes Associadas à Mucosa/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Menor/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740973

RESUMO

Tumor antigen heterogeneity, a severely immunosuppressive tumor microenvironment (TME) and lymphopenia resulting in inadequate immune intratumoral trafficking, have rendered glioblastoma (GBM) highly resistant to therapy. To address these obstacles, here we describe a unique, sophisticated combinatorial platform for GBM: a cooperative multifunctional immunotherapy based on genetically engineered human natural killer (NK) cells bearing multiple antitumor functions including local tumor responsiveness that addresses key drivers of GBM resistance to therapy: antigen escape, immunometabolic reprogramming of immune responses, and poor immune cell homing. We engineered dual-specific chimeric antigen receptor (CAR) NK cells to bear a third functional moiety that is activated in the GBM TME and addresses immunometabolic suppression of NK cell function: a tumor-specific, locally released antibody fragment which can inhibit the activity of CD73 independently of CAR signaling and decrease the local concentration of adenosine. The multifunctional human NK cells targeted patient-derived GBM xenografts, demonstrated local tumor site-specific activity in the tissue, and potently suppressed adenosine production. We also unveil a complex reorganization of the immunological profile of GBM induced by inhibiting autophagy. Pharmacologic impairment of the autophagic process not only sensitized GBM to antigenic targeting by NK cells but promoted a chemotactic profile favorable to NK infiltration. Taken together, our study demonstrates a promising NK cell-based combinatorial strategy that can target multiple clinically recognized mechanisms of GBM progression simultaneously.


Assuntos
Engenharia Genética , Glioblastoma/terapia , Imunoterapia Adotiva , Células Matadoras Naturais , Microambiente Tumoral/imunologia , Animais , Autofagia , Glioblastoma/imunologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Rep ; 11(1): 13131, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162938

RESUMO

Xenotransplantation (cross-species transplantation) using genetically-engineered pig organs offers a potential solution to address persistent organ shortage. Current evaluation of porcine genetic modifications is to monitor the nonhuman primate immune response and survival after pig organ xenotransplantation. This measure is an essential step before clinical xenotransplantation trials, but it is time-consuming, costly, and inefficient with many variables. We developed an efficient approach to quickly examine human-to-pig xeno-immune responses in vitro. A porcine endothelial cell was characterized and immortalized for genetic modification. Five genes including GGTA1, CMAH, ß4galNT2, SLA-I α chain, and ß2-microglobulin that are responsible for the production of major xenoantigens (αGal, Neu5Gc, Sda, and SLA-I) were sequentially disrupted in immortalized porcine endothelial cells using CRISPR/Cas9 technology. The elimination of αGal, Neu5Gc, Sda, and SLA-I dramatically reduced the antigenicity of the porcine cells, though the cells still retained their ability to provoke human natural killer cell activation. In summary, evaluation of human immune responses to genetically modified porcine cells in vitro provides an efficient method to identify ideal combinations of genetic modifications for improving pig-to-human compatibility, which should accelerate the application of xenotransplantation to humans.


Assuntos
Animais Geneticamente Modificados/imunologia , Antígenos Heterófilos/imunologia , Células Endoteliais/imunologia , Suínos/imunologia , Transplante Heterólogo/métodos , Animais , Anticorpos Heterófilos/imunologia , Reações Antígeno-Anticorpo , Antígenos Heterófilos/genética , Sistemas CRISPR-Cas , Degranulação Celular , Linhagem Celular Transformada , Citocinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Técnicas de Inativação de Genes , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/imunologia , Fígado/citologia , Ativação Linfocitária , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/imunologia , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/imunologia , Microglobulina beta-2/genética , Microglobulina beta-2/imunologia
9.
Immunohorizons ; 5(6): 500-511, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172533

RESUMO

Immunotherapy for cancer treatment requires the activation of cytotoxic effector lymphocytes. Mucosal-associated invariant T (MAIT) cells are innate T cells that recognize the MHC class I-like molecule MR1. MAIT cells play an important role in the immune response against microbial infections and can directly kill tumor cells. Although MAIT cells can be expanded ex vivo, this method is time-consuming, expensive, and requires allogenic feeder layers. To overcome the limitations of conventional dendritic cell-based vaccines and ex vivo expansion of human T cells, an artificial APC (aAPC) approach to expand antitumor effector cells has several advantages. In this study, we explored an efficient in vitro method to amplify MR1-specific MAIT cells from human peripheral blood using aAPCs made by coating cell-sized latex beads with an Ag-loaded MR1 tetramer complex and anti-CD28 Ab. We further elucidated the cytotoxic potential of such expanded MAIT cells against three human glioblastoma multiforme (GBM) cell lines to explore their potential use as a novel immunotherapeutic tool, as the mostly lethal GBM poorly responds to conventional chemotherapy. When aAPCs were compared with the standard allogenic feeder layer-based approach for MAIT cell expansion, they were significantly more effective. Our results indicate that the aAPC-expanded MAIT cells remained functional, retained their original phenotype, secreted proinflammatory cytokines, and showed cytotoxicity against the GBM cell lines. Hence, MAIT cells have the potential to be a novel tool in immunotherapy approaches for the treatment of human GBM.


Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/uso terapêutico , Glioblastoma/terapia , Células T Invariantes Associadas à Mucosa/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Vacinas Anticâncer/imunologia , Engenharia Celular/métodos , Linhagem Celular Tumoral , Células Cultivadas , Glioblastoma/imunologia , Glioblastoma/patologia , Voluntários Saudáveis , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Cultura Primária de Células/métodos
10.
Neurooncol Adv ; 3(1): vdab034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948562

RESUMO

BACKGROUND: Glioblastoma is the most common adult primary brain tumor with near-universal fatality. Major histocompatibility complex (MHC) class I molecules are important mediators of CD8 activation and can be downregulated by cancer cells to escape immune surveillance. MR1 is a nonclassical MHC-I-like molecule responsible for the activation of a subset of T cells. Although high levels of MR1 expression should enhance cancer cell recognition, various tumors demonstrate MR1 overexpression with unknown implications. Here, we study the role of MR1 in glioma. METHODS: Using multi-omics data from the Cancer Genome Atlas (TCGA), we studied MR1 expression patterns and its impact on survival for various solid tumors. In glioma specifically, we validated MR1 expression by histology, elucidate transcriptomic profiles of MR1 high versus low gliomas. To understand MR1 expression, we analyzed the methylation status of the MR1 gene and MR1 gene-related transcription factor (TF) expression. RESULTS: MR1 is overexpressed in all grades of glioma and many other solid cancers. However, only in glioma, MR1 overexpression correlated with poor overall survival and demonstrated global dysregulation of many immune-related genes in an MR1-dependent manner. MR1 overexpression correlated with decreased MR1 gene methylation and upregulation of predicted MR1 promoter binding TFs, implying MR1 gene methylation might regulate MR1 expression in glioma. CONCLUSIONS: Our in silico analysis shows that MR1 expression is a predictor of clinical outcome in glioma patients and is potentially regulated at the epigenetic level, resulting in immune-related genes dysregulation. These findings need to be validated using independent in vitro and in vivo functional studies.

11.
Immun Inflamm Dis ; 9(1): 299-309, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33332759

RESUMO

INTRODUCTION: Gut microbiota has been reported to contribute to obesity and the pathology of obesity-related diseases but the underlying mechanisms are largely unknown. Mucosal-associated invariant T (MAIT) cells are a unique subpopulation of T cells characterized by the expression of a semi-invariant T cell receptor (TCR) α chain (Vα19 in mice; Vα7.2 in humans). The expansion and maturation of MAIT cells require the gut microbiota and antigen-presenting molecule MR1, suggesting that MAIT cells may play a unique role in bridging gut microbiota, obesity, and obesity-associated inflammation. METHODS: The levels of human MAIT cells from obese patients, as well as mouse MAIT cells from obese mouse models, were determined by flow cytometry. By comparing to controls, we analyzed the change of MAIT cells in obese subjects. RESULTS: We found obese patients had fewer circulating MAIT cells than healthy-weight donors and the difference was more distinct in male patients. Consistently, male mice (but not female mice) have shown reduced MAIT cells in the liver and adipose tissue after a 10-week Western diet compared to mice on a control diet. We also explored the possibility of utilizing high-throughput technology (i.e., quantitative polymerase chain reaction [qPCR]), other than flow cytometry, to determine the expression levels of the invariant TCR of human MAIT cells. But a minimal correlation (R2 = 0.23, p = .11) was observed between qPCR and flow cytometry data. CONCLUSION: Our study suggests that there is a sex discrepancy in the impact of obesity on MAIT cells: MAIT cells in male (but not female) humans and male mice are reduced by obesity.


Assuntos
Células T Invariantes Associadas à Mucosa , Animais , Feminino , Citometria de Fluxo , Humanos , Inflamação , Masculino , Camundongos , Obesidade , Receptores de Antígenos de Linfócitos T/genética
12.
Front Aging Neurosci ; 12: 592359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328972

RESUMO

In the naïve mouse brain, microglia and astrocytes are the most abundant immune cells; however, there is a complexity of other immune cells present including monocytes, neutrophils, and lymphocytic cells, such as natural killer (NK) cells, T cells, and B cells. In Alzheimer's disease (AD), there is high inflammation, reactive microglia, and astrocytes, leaky blood-brain barrier, the buildup of amyloid-beta (Aß) plaques, and neurofibrillary tangles which attract infiltrating peripheral immune cells that are interacting with the resident microglia. Limited studies have analyzed how these infiltrating immune cells contribute to the neuropathology of AD and even fewer have analyzed their interactions with the resident microglia. Understanding the complexity and dynamics of how these immune cells interact in AD will be important for identifying new and novel therapeutic targets. Thus, this review will focus on discussing our current understanding of how macrophages, neutrophils, NK cells, T cells, and B cells, alongside astrocytes, are altered in AD and what this means for the disorder, as well as how these cells are affected relative to the resident microglia.

13.
J Neuroimmunol ; 349: 577428, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33096293

RESUMO

It is unknown whether brain astrocytes and microglia have the capacity to present microbial antigens via the innate immune MR1/MAIT cell axis. We have detected MAIT cells in the normal mouse brain and found that both astrocytes and microglia are MR1+. When we stimulated brain astrocytes and microglia with E. coli, and then co-cultured them with MAIT cells, MR1 surface expression was upregulated and MAIT cells were activated in an antigen-dependent manner. Considering the association of MAIT cells with inflammatory conditions, including those in the CNS, the MR1/MAIT cell axis could be a novel therapeutic target in neuroinflammatory disorders.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Antígenos de Histocompatibilidade Classe I/biossíntese , Imunidade Inata/fisiologia , Microglia/metabolismo , Antígenos de Histocompatibilidade Menor/biossíntese , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Astrócitos/imunologia , Encéfalo/imunologia , Linhagem Celular , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Células T Invariantes Associadas à Mucosa/imunologia
14.
Anticancer Res ; 39(2): 549-555, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30711929

RESUMO

BACKGROUND/AIM: Invariant natural killer T-cells (iNKT) stimulated by CD1d-binding glycolipids have been shown to exert antitumor effects by a number of studies in a mouse model. Breast cancer is a devastating disease, with different types of breast cancer recurring locally or distant as metastatic/advanced disease following initial treatment. The aim of this study was to examine the tumoricidal effect of a CD1d-binding glycolipid, called 7DW8-5, against a highly invasive human breast cancer cell line both in vitro and in vivo. MATERIALS AND METHODS: Parental MDA-MB-231 cells and MDA-MB-231 cells transduced with human CD1d were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE), followed by loading with glycolipids. After co-culturing with human iNKT cells, the cells were permeabilized and stained with Alexa Flour 647-conjugated antibody to active caspase-3, and analyzed using a BD LSR II. For the in vivo tumoricidal effect, MDA-MB-231 cells transduced with human CD1d and luciferase genes were injected into the mammary fat pad of female NOD/SCID/IL2rγnull (NSG) mice, followed by the injection of human iNKT cells with or without 7DW8-5, and the levels of luminescence were analyzed with whole-body imaging. RESULTS: Human iNKT cells could kill CD1d-expressing human breast cancer cells in vitro in the presence of 7DW8-5, but not α-GalCer. As for in vivo, the adoptive transfer of human iNKT cells into tumor-challenged NSG mice significantly inhibited the growth of CD1d+ MDA-MB-231 human breast cancer cells in the presence of 7DW8-5. CONCLUSION: CD1d-binding, glycolipid-based iNKT-cell therapy is suggested as a potent and effective treatment against breast cancer in humans.


Assuntos
Antígenos CD1d/metabolismo , Neoplasias da Mama/metabolismo , Glicolipídeos/farmacologia , Células T Matadoras Naturais/citologia , Animais , Antígenos CD1d/genética , Linhagem Celular Tumoral , Feminino , Fluoresceínas/química , Humanos , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Succinimidas/química , Transdução Genética
15.
Eur J Immunol ; 49(2): 255-265, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30467836

RESUMO

Invariant natural killer T (iNKT) cells play critical roles in autoimmune, anti-tumor, and anti-microbial immune responses, and are activated by glycolipids presented by the MHC class I-like molecule, CD1d. How the activation of signaling pathways impacts antigen (Ag)-dependent iNKT cell activation is not well-known. In the current study, we found that the MAPK JNK2 not only negatively regulates CD1d-mediated Ag presentation in APCs, but also contributes to CD1d-independent iNKT cell activation. A deficiency in the JNK2 (but not JNK1) isoform enhanced Ag presentation by CD1d. Using a vaccinia virus (VV) infection model known to cause a loss in iNKT cells in a CD1d-independent, but IL-12-dependent manner, we found the virus-induced loss of iNKT cells in JNK2 KO mice was substantially lower than that observed in JNK1 KO or wild-type (WT) mice. Importantly, compared to WT mice, JNK2 KO mouse iNKT cells were found to express less surface IL-12 receptors. As with a VV infection, an IL-12 injection also resulted in a smaller decrease in JNK2 KO iNKT cells as compared to WT mice. Overall, our work strongly suggests JNK2 is a negative regulator of CD1d-mediated Ag presentation and contributes to IL-12-induced iNKT cell activation and loss during viral infections.


Assuntos
Antígenos CD1d/imunologia , Ativação Linfocitária , Proteína Quinase 9 Ativada por Mitógeno/imunologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/genética , Feminino , Interleucina-12/genética , Interleucina-12/imunologia , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 9 Ativada por Mitógeno/genética , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/imunologia , Viroses/genética , Viroses/imunologia
16.
Curr Opin Immunol ; 52: 87-92, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734045

RESUMO

Many reviews on the CD1d/NKT cell axis focus on the ability of CD1d-restricted NKT cells to serve as effector cells in a variety of disorders, be they infectious diseases, cancer or autoimmunity. In contrast, here, we discuss the ways that viruses, bacteria and tumor cells can evade the CD1d/NKT cell axis. As a result, these disease states have a better chance to establish a foothold and potentially cause problems for the subsequent adaptive immune response, as the host tries to rid itself of infections or tumors.


Assuntos
Antígenos CD1d/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Animais , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais , Viroses/imunologia , Viroses/metabolismo , Vírus/imunologia
17.
Immunology ; 152(2): 232-242, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28518215

RESUMO

Mucosal-associated invariant T (MAIT) cells are conserved T cells that express a semi-invariant T-cell receptor (Vα7.2 in humans and Vα19 in mice). The development of MAIT cells requires the antigen-presenting MHC-related protein 1 (MR1), as well as commensal bacteria. The mechanisms that regulate the functional expression of MR1 molecules and their loading with bacterial antigen in antigen-presenting cells are largely unknown. We have found that treating B cells with the Toll-like receptor 9 (TLR9) agonist CpG increases MR1 surface expression. Interestingly, activation of TLR9 by CpG-A (but not CpG-B) enhances MR1 surface expression. This is limited to B cells and not other types of cells such as monocytes, T or natural killer cells. Knocking-down TLR9 expression by short hairpin RNA reduces MR1 surface expression and MR1-mediated bacterial antigen presentation. CpG-A triggers early endosomal TLR9 activation, whereas CpG-B is responsible for late endosomal/lysosomal activation of TLR9. Consistently, blocking endoplasmic reticulum to Golgi protein transport, rather than lysosomal acidification, suppressed MR1 antigen presentation. Overall, our results indicate that early endosomal TLR9 activation is important for MR1-mediated bacterial antigen presentation.


Assuntos
Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária , Antígenos de Histocompatibilidade Menor/imunologia , Receptor Toll-Like 9/imunologia , Antígenos de Bactérias/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/microbiologia , Linhagem Celular Tumoral , Ilhas de CpG , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Complexo de Golgi/imunologia , Complexo de Golgi/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/imunologia , Lisossomos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Oligonucleotídeos/farmacologia , Transporte Proteico , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Receptor Toll-Like 9/efeitos dos fármacos , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Transfecção
18.
Front Immunol ; 8: 1901, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354122

RESUMO

Neurofibromin 1 (NF1) is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT) cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair) host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/- mice. Nf1+/- mice were found to have similar levels of NKT cells as wildtype (WT) littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/- mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/- mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/- mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/- mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.

19.
J Immunol ; 197(8): 2971-2979, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27824592

RESUMO

Cell signaling pathways regulate much in the life of a cell: from shuttling cargo through intracellular compartments and onto the cell surface, how it should respond to stress, protecting itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These signaling pathways are important for various aspects of the immune response as well. However, not much is known in terms of the participation of cell signaling pathways in Ag presentation, a necessary first step in the activation of innate and adaptive T cells. In this brief review, I discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T cells and the mechanism(s), if identified. Studies in this area have important implications in vaccine development and new treatment paradigms against infectious diseases, autoimmunity, and cancer.


Assuntos
Apresentação de Antígeno , Doenças Autoimunes/imunologia , Infecções/imunologia , Neoplasias/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Vacinas/imunologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Infecções/terapia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/terapia
20.
Pathog Dis ; 74(6)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297969

RESUMO

Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses.


Assuntos
Antígenos CD1d/metabolismo , Metabolismo Energético , Imunomodulação , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativação Linfocitária/imunologia , Masculino , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...